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ABSTRACT

New extensions of Phillips' (1959) computa-
tional stability analysis to several finite-difference
forms yield some interesting explanations of what
is generally observed when nonlinear computational

9 instability sets in. The one-dimensional shock
equation has been adopted for the analyses, and in
spite of its apparent simplicity it is capable of

' ........... describing many features of both stable and unstable
calculations with the full set of atmospheric equations.

The analyses, among other things, are used
:l::,:;':''::'to investigate the validity of some ideas which have

been proposed in the past as root causes of non-
linear instability. Among the analyses are cases
in which cascade of energy is permitted in the
spectrum but energy is not trapped in the high wave
numbers, unstable cases in which aliasing is not
permitted, and cases in which the computational
mode can be a stabilizing factor. The so-called
"energy-conservation" form is partially analyzed,
and shown to have a stability criterion similar to
the others.
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Introduction

What this paper purports to do is to make a
few extensions to a small body of knowledge to be
found in the literature about the analysis of sta-
bility of non-linear partial finite-difference equations
commonly used in meteorological research and
operations. The classical paper in stability analysis
is Courant et al. (1928), but Phillips (1959) provided
a departure into the analysis of non-linear equations.
Phillips' work was extended by Richtmyer (1963),
Lilly(1965), Robert (1969), and Robert et al. (1970).
From the standpoint of the- effort in hand, Lilly (1965)

~':~';',:'~' -does not fit directly in the sequence because he
implicitly assumed that the time-difference-ratio 
converges to the derivative as the time step becomes
vanishingly small. His results are'borne out .experi-
mentally in stages of calculations where convergence -
is at least approximated, but experiments show that
convergence does not universally obtain.

*
Use of smoothing devices in time, or forward

differences which damp are now the rule, in both
-~~~~ ~ operations and research, which may quantitatively

improve convergence. It is our purpose however
to investigate systems centered in space and time,
because in the linear case such systems are per-

!.:!'.?!~i: .fectl, stable, i. e., neither amplification nor damping
arises from truncation error.

Notation

A convenient finite difference notation will be
used, which is described in Robert et al. (1970) and
elsewhere. Briefly, an independent variable used
as a subscript (e. g., x in ux) will denote a partial
finite difference ratio in that variable, involving
values at immediately adjacent grid points. An in-
dependent variable used as a superscript following
a superposed bar (e g. , x in u ) will denote an
algebraic mean of the variable at two immediately
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adjacent grid points. The prefix "2" to an operating
independent variable (e.g., 2 in UZx and u x) will
extend the action to two grid increments, with the
central value not involved. Attachment of two
operating variables denotes action twice.

Extension of Phillips' analysis

Phillips (1959) dealt with the so-called baro-
tropic equation,

+ 0.,C
at a(xy) = 0.

where

h= V2

The finite-difference analog he analyzed was

Ct + tMC 2y - t2y C2X = 0. (1)

where

C = *xx + *yy

The general solution for this equation is not known.
Phillips, however, found the special solution

(C cos ITTj +S sin ½i j + U cos 1j) sin2rrk

where

j = x/fi

k =y/A

and A is the distance between adjacent points in a
square array in the two space dimensions, x and y.
The coefficients C, S, and U are all functions of

3
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n only, where

n = t/At

and At is the time step.

Anticipating the analyses of Richtmyer (1963),
Robert (1969), and Robert et al. (1970), we will alter
Phillips' solution in a deceptively simple way by
adding a "V", thus:

=(C cos T j + S sin rr j + U cos T j + V) sin Tr k.
(2)

:-~*,: , u!. ~The,-variable, V, here, like C, S, and U, is
:-:: -*' dependent on n only. Then, otherwise following

Phillips, we substitute from (2) into (1), equate
coefficients of like components, and obtain

/23
C2t = i S (U - V) (3a)

*Set = C ( (U+V) (3b)

U 2 t = V2 t = 0 (3c)
. ?....!

The general- solutions of (3c) may immediately
be expressed as

........ :, ....... U = U. + Us COS TT n
.7 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(4)
V = UO + U2 cos TTn 

where U0, U1, U2, and Us are constants depending
on the values of U and V at the two necessary
initial time steps. We next difference (3a) with the
operator-( )2t , using (4), and substitute for S2t
from (3b), obtaining the second-order difference
equation

C2~tt + 100 A [ (Uo +U3 )2 - (U1 + U; )2] C = 0 (5)

The upper signs hold if the central n is even, the
lower if odd.

4_-' ( .
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The criterion for stability of (5). is
3_. (at?2

O< O- [(UO+ U3 )2(M+U 2 )2 < (6)

Whether the right hand inequality is satisfied or not,
depends on the magnitude of At, and corresponds to
the criterion analyzed by Courant et al. (1928).
Whether the left hand inequality is satisfied, however,
depends only on the balance betwveen the squared
quantities within the square brackets, and not at all
on the magnitude of At, except for the trivial case
of At = 0.

m,, :.:::'-::~; A few interesting points may be made from (6).
First, the computational mode is often blamed for
instability. The computational mode is represented
by the coefficients U2 and U3 of the high frequency
component, cos 1 n, in (4). The constants U0 and U1,.
on the other hand,' represent the low frequency physical
mode. Note that in Phillips t original analysis, V = 0,
and therefore Uo = U2 = 0. His stability criterion,
therefore, reduces to

lO 3-Ar(2U) 1.
100 ,,( -

Thus, the physical mode in his analysis is the source
of any non-linear instability; the computational mode

:?':i :-!;'.;:is a stabilizing factor.

In the more general criterion (6), however, we
find that the coefficient U0, representing the physical
mode, is a stabilizing factor and U2, representing
a high frequency, and therefore a computational mode,
is a destabilizing factor. Since U, and therefore U, 
and U3, are coefficients of the high wave number
component, cos T j, in the solution (2), U1 and U3
represent high wave numbers in the solution, and
likewise UO and U2 represent low wave numbers.

5?! . ,.!
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The true situation is that high frequencies are
either stabilizing or destabilizing, depending on
their wave number. Similarly, high wave numbers
in the solution are either stabilizing or destabilizing,
depending on their frequency. The true situation is
summarized in Table I.

It is also important to point out that neither the
high frequencies nor the high wave numbers are in
themselves unstable. Indeed, as shown by (4), they
are perfectly stable, i.e., they are neither amplified
nor damped. The same is true of low frequencies
and low wave numbers. As Table I shows, however,

~; ,;,;:.,, ~ the analysis indicates that a component with either
... KU- 'high frequency or high. wave number (but not both)

causes instability in the middle wave numbers.

In this connection, note that the coefficient C
in (2) multiplies cos IT j, which cycles in four grid
increments. The four-grid-increment wave is exactly

w~~~ ( ~in the middle of the spectrum, in the sense that there
are just as many longer components as there are
shorter.

The role of aliasing

The next question which will be considered here
... :-A:*.~::: iis the role aliasing plays. The shock equation,

au +u au = 0
At ax

will be used for this investigation. Richtmyer (1963)
showed that the analysis of the shock equation gives
results in all important respects the same as Phillips'
analysis of the barotropic equation. Analyses of the
shock equation have often been interpreted in terms of
the effects of the advective terms on stability of calcu-
lations with the more general hydrodynamical equations.

6
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Table I

Space
Time

Low wave
number

High wave
number

l -1

lUO Ri U1 Ph-Ri
Low frequency
(Physical mode) Stabilizing Destabilizing-~. .I.
High frequency
(Computational mode)

U2 Ro

De stabilizing

us Ph-Ri

Stabilizing

Table I, showing schematically the effects on
stability of the spectra extremes. The symbols,
Ri, Ro, Ph, stand for Richtmyer (1963), Robert
(1969), and Phillips (1959), respectively, and show
the parts of the spectra included in their analyses.
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Furthermore, the equations for a traveling
gravity wave may be reduced to a single shock
equation. For illustration, consider the system of
equations which describe the dynamics of a gravity
wave in a homogeneous incompressible fluid with a
free surface and slab symmetry:

au +u au + gah = o0
at ax ax

ah +u ah +h au = 0
at ax ax

:.;3.:.,.. where x is horizontal distance, t time, u velocity,
g gravitational acceleration, and h the height of
the free surface. Define a new variable, c, by

c = gh

eQg ( ~Then

a+u + u 2c C 0
at ax ax =

2 ac + 2 uu ac +c au= 0at ax ax

~!:~;i. .~i;t ~Addition and subtraction of these two equations
yields

a(u+2c) + (u+c) 8(u+2c) = o
~at axx

a(u-2c) + (u-c) 8(u-2c) = 0
.. . at ax - .t o

The last two equations each correspond to one of the
two roots of the linearized gravity wave equation,
and show that influences travel with the two speeds,
u + c and u - c. Now let c = c - c, where c is the

O^'~~~~~ s~~~~~8..::.:..:::!..~i
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space-time average of c. If at an instant u- 2c = 0
everywhere, the latter of the pair of equations shows
that the condition holds for all time.

Letting, then,. u = 2 c and eliminating u from
the first of the pair, we find

ac -+(3c' +) a c- = O.
at ax

Introduction of the variable

U = 3c +

leads to

aU +u 8U = o.
8t ax

~* 0~( ~ The simple. shock equation, therefore, represents
a whole variety of phenomena described by the more
general meteorological equations.

We will use the finite-difference form which
Richtmyer analyzed,

*.......:.,1u u2t = -(U)2X

The right-hand member may also be written in two
precisely equivalent other ways:

x
u2t = 4 (u2 )2x = ux ux) = - 2X u x (7)

The third member corresponds to the so-called
semi-momentum form, which has been used at the
National Meteorological Center in research and later
in operations since 1959.

9
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We will try as a special solution of (7)

u=Ccos Tj + Ssin Tr j + Ucos TTrj + V (8)

where C, S, U, and V are functions of time (n) only.
This trial solution differs from Richtmyer's in that
he regarded V as a constant, which is a special case
of (8). Now at grid points,

u2 X = _Ucos n j + V
(9)

U~X= - ( -C sin TT j+ Scos nj )i:'-::"':'-:-"N''. Therefore, ;

2X UX= C( Ucos r j + V)sin ½ j
(i0)

S ( Ucos TTj + V)cos TTj

But

cos rj cos-½ Tj : cos ½ nj + cos (3/2 T j)
(11)

:.:?i4;~;;; ,cos T j . sin I Tj = - sin T j + sin(3/2 n j)

These relations are valid whether or not j is an
integer.

: :-::: :,: . j!!,i

Substitution from (11) into (10) and from (10)
and (8) into (7) gives

Cat cos rr j + S2t sin ;r;j + Uat cos nrj + V2t

( U - V ) cos j + S U cos 3/2 rr j
.. (12)

+ C (U +V) sin rrj - C U sin 3/2 TT j

This will lead to a non-trival solution only if the
components cos 3/2 r j and sin 3/2 r j can be
related to the other components which appear in

* O~~~~~~~( ', ~10
:· .- ,....'j
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(12), and indeed, at the grid-points, where j is an
integer,

cos (3/2 rj) = cos (3/2 -2) Trj =cos Tr j
(13)

sin (3/2 TTj) = sin (3/2 -2) Tr j = - sin i Tr j

In making a direct substitution from (13) into
(12), then, we will have aliased cos (3/2 Tr j ) and
sin (3/2 Trj ) (components 4/3 Along) into
cos 2 TTj and sin. iT j (components 4 A long).
We will, however, have done more. The components
4/3 A long interacting with the 2 A components will

:"~--~-:'},:. generate 4/7 A components according to:

cos Tj cos(3/2 TTj) = ½[cos i Tj +cos(7/2 tj)]

The 4/7 A components will generate higher wave
numbers, which in turn will generate even higher
wave numbers, and so on. Since the 4/3 A com-
ponent cannot be distinguished from the 4 A com-
ponent with the information at grid points, it is
evident that the higher wave numbers also cannot.
The upshot is that making a substitution from (13) is
valid, butin doing so we will have aliased a multitude
of high wave numbers into the 4 A components. At

.I;:..:-.-.~ any rate, making the substitution, we get,

Cst - S (U - V)
A

S2t - C(U+V)
A

U2t = Vt = 0

On the other hand, we can in principle achieve
a non-trivial solution of (12) without aliasing, by
modifying the numerical integration procedure. In
particular, we are-interested in the solution for a
procedure in which all components shorter than 2 A

.· _~ are removed immediately as they are generated.

t ( ' ~~~~~~~~~~~~~~~11
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This leads to

C2 t = S(12 U -V)
A

S2t = C(2u+V)
A

U2 t= V 2 t = 0

Both numerical procedures may be indicated
in a single set:

Ct = S [i( + 6 )U -V]

*-g.S~~e, - . -52t = A1 C [ i ( I + 6 ) u + V ] : (4 S2t -LCtI(l+6)J+VI
A

(14)
U2t = V2 t = 0

where if 6 = 1, the set describes the former procedure
in which we have aliased. If 6 = 0, the set (14) de-
scribes the latter procedure in which we have removed
all components shorter than 2 A. In the latter case,
not only have we aliased no components into others,
we have not even included any components which can

?-hi:::<-~ .. be aliased into the ones with which we started. Com-
parison of the stability of the two procedures, there-
fore, will shed considerable light on the role of
aliasing.

We immediately write the solutions for U and V,

U = U1 +U 3 cos TT n
(15)

V = UO + U2 cos r n

Then proceeding as with the derivation of (6), we
find the stability criterion to be

(A t) 0+ 1+ U0 { [U o_ + (1 +6)U 3 ] 2 (16)

- [ (1+) U1 +_U2 2 3<1

12
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Again, the upper signs hold if the central n is even,
the lower if odd.

Thenature of the criterion is thus not changed
whether 8= 0 (no aliasing) or 6 =1 (aliasing), although
the balances among the various terms are somewhat
different. Furthermore, the difference in the balance
among the terms, depending on whether 6 = 0 or 6 = 1,
will favor either stability or instability, depending on
the values of Uo , U,, U2 and U3 relative to each other.

Orszag (1971) has pointed out that, if components
3 A(cos 2/3 TTj and sin 2/3 Tr j ) and shorter are con-
tinually removed from the calculation, there will be
no components to alias. Application of his idea to (7)
and (8), leads to a numerical procedure in which U
vanishes, and the stability condition becomes

~~~~
* ~~O~r s t-2 ) < 1 -

0 ( : It should be remarked that (16)with 8 = 1, is
identical to the stability criterion found by Robert
et al. (1970) for the linear equation

ei,.- C*.;..

f2t + U f2x = 0

U= UO + U, cos lTj + U cos Tn + U3 cos Trrj cos TTn

The identity of the criteria follows from (9) and (15).

The nature of "aliasing"

Let us examine carefully the nature of "aliasing.
First, consider a function, f(x), given in the region
0<x<P. This may be expressed with a Fourier series:

f(x) = k crk ak cos 21x + bk sin 2rUkx)k=O P p

*!!'..::! i:!!ii~!?:-~~13
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where a 2 = 

and ak = 1 if k 0 .

The discrete function, ak, has been introduced for

convenience in the following derivations.

We now let f(0) = f(P), and thereby let the
region for which the series is valid be extended to
x = 0 and x = P. i.e., 0 5 x 5 P. Since the cor-
responding component vanishes, we arbitrarily set
bo =.

-~.,..~.~ - ANow let the region 0 < x ! be divided into
-'":~'~:'~ -J equal intervals, A, and consider the situation 

where we as analysts are given f (x) only at the
points bounding the intervals. Let j = x/A, a set
of integers. Note that J = P/A. We will denote the
given discrete set of f(x) by f j, 1 S j J T. Then by
substitution,

' 2kj bk s 2 Tkj\
f= k=0 - k (a k co +b sin (17)
.. , iE ck k J k 

We immediately note that the subset of coef-
ficients biNJ , where N is any integer, do not
contribute to the sum at the given points, since the

-:.:'.;;:,. corresponding components vanish there. In other
words, for k = N J, sin (2 rT k j/J) is indistin-
guishable from its values when k=0 . We may
therefore "alias" the former into the latter. We
may do so, however, only so long as our analysis
includes no information about f (x) except at the
given points. The components have not themselves
changed merely because certain information about
f (x) is being withheld from us. Other analysts who
may have more information about f (x) may not
"alias" such components.

14



Now, we are given J values of fj , but there
are an infinite number of independent coefficients,
ak and bk, in (17). Because of the disparity of
information contained in f- compared with ak and
bk, we cannot determine tde set of ak and bk from
the set of fj . Through the technique of "aliasing,"
however, sums of certain subsets of ak and bk can
be determined. Note again, that it is we, the analysts,
who are doing the "aliasing," nothing about the coef-
ficients or their components is changed.

We proceed with the "aliasing" technique as
follows: For any kin (17) a pair of integers, m and
n, may always be found such that

k = m + n J

and -iJ m: + J.

Furthermore, for a given k, m and n are unique,
except for m = + ½ J. In that case, k may be ex-
pressed as

either

k= ½ J + n J

or

k = - J + (n + 1) J

Equation (17) may now be expressed in terms
of m and n in place of k:

+IJ , co 2 TT (m 
i m - J m n= n am, n cos JfJ m-- 2 ! ym n=O

L

2 rr( mnJ )j+bm, n sin (mn Jj
J

(18)
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where

= ifm= + J
am -- #2

aCm = 1 if m i + ½ J

The ambiguity about n when m = + E J has here
been resolved by including ½ of each of the two
possible pairs of m,n . As with a, a' has been
introduced for convenience and economy in writing.
The meaning of the limits on the first E in (18) is
that the summation includes all terms at and inside,
but no terms outside, the limits

-vJSt m 5+ iJ

Thus for odd J, the first and last terms in the first
sum'of (18) are for m= -(J - 1 ) and m = + (J- 1),
respectively. We also note that some of the terms
in the summation for n = 0 imply k < 0, and therefore* ( imply a subset of ak and bk not included in (17).
Such ak and bk have been introduced with the
condition

· . s.,.- .--s.

ar k = ak

bok = -bk

Now, because n, J, and j are integers, and
trigonometric functions are unchanged by a change
in angle by any multiple of 2 rr, we write,

f.= Z ~a Z ar am~ CO= = E iJ :m n=0 n m (19)
+ sin2 TTM j
m,n sn~ 

and have thus "aliased" all wave numbers higher
than '2 J into wave numbers lower than I J.
Equation (19) is not an identity, however, but only an

16
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equality, and its validity is restricted to the set of
integer j.

Because the sign of the sine changes with a
change in sign of the angle, and the sign of the
cosine does not, (19) may be written:

2 2'( a )o 2rrmv J , cX 2mJf j = Z am a" y. an (am.,n+amn ) c os

m=0 m m n=0 amn -m,n
+(bm, n-bm, n)Sin 2Tj

or,
-Ij , 2 Trm 2 \ (2 0.

f z m Vm Am Cos j . +Bm sin j. .( 20

m0where (

Where

(21)
Am n=O an (am,n + a-m,n)c= o
Bm _- . an (bm, n - b-mn_

n-O r~

Through the technique of analysis called
"aliasing," we have thus achieved an equation with-
out disparate information content in the set of Am
and Bm compared with the set of fj. Just as there
are J independent values of fj given for (20), there
are J coefficients, Am and Bm . If J is even, there
are (iJ+1 ) of Am and ( J +1) of Bm, but two of
BinMS Bo and B 1 J, do not contribute to the sum
because their corresponding components vanish
for integer j . If J is odd, there are (J+1) each
of Am and Bm , but one of Bm, Bo, does not
contribute to the sum. Bo, and B J when it exists,
may therefore arbitrarily be set to zero.

We analysts commonly determine only the set
of Am and Bm , because it is determinable from
the set of fj, whereas the set of ak and bk is not.

(1

(
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In the march forward in time with a non-linear finite
difference equation such as (7), wave numbers higher
than J are generated. Indeed their amplitudes can
in principle be determined through the use of the
predictive equation (7) and relations like (11), although
in practice the number of components doubles each
time step and it would therefore not be feasible to
keep an accounting of them for very many time steps
even with today's largest computers.

To relate this discussion to our earlier analysis,
(8) should be interpreted as

u=kO k ,.Ok akcos + bk sin2ki)

with k restricted to multiples of 4J. If k is so
restricted in the initial conditions, it will remain so
restricted throughout the integration, for wave
numbers of components generated by multiplication
are sums and differences of k's, and therefore will
themselves be multiples of * .

Thus, with

k=m+4n
and -2 <m +2,

then
2

u= E
m=O

2rmj 2mmj)am c a A cos 4 +Bm sin 4)m M( M ~~~4 4)

where

ao aJ = i
0 0 2

0:L al = I

02 C = i

Q(1

(

S 
,,,.-w. ,ty-

A:: .-;z

: ~10- : a

v-'. ; '. , ;, .-
. -: .. ;.'10 :
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and

Am - . (am, +a- )
= n a(bm, n -b

BM En=O rn (bin -, n

In (8), then,

V = i Ao = Z cna o0 n=0 "n o~, nn=0 n

con=O an (al,n + a.lln )
:,~-?:i.: ~ S = B1 = E aCn (b4 n ' b-l,n )E~~~~~~~~~~~~O ;: o 

A 2 n'O Cn (a2, + a-2 n

In determining stability in terms of whether
V, C, S, and U are bounded or not, therefore, we
are not looking at amplitudes ak and bk of individual
components, but rather the sums, Am and Bm , of
amplitudes of selected subsets of those components.
Aliasing is not anything happening in the calculation,3-:.i,'',., ,but rather something which we analysts do when we
group amplitudes into a finite number, J to be precise,
of subsets. Semantically it is nonsense to say that
one component aliases into another, although it may
be acceptable as jargon if the meaning is precisely
understood. More correct semantically is "one
component is aliased (by the analyst) into another."
In its nature, "aliasing" is not something done by the
components in a calculation, but something which is
done by we analysts in our analysis of the calculation.
It is likewise incorrect to say that "aliasing" causes
instability or any other characteristic of a calculation.

Trapping of energy and instability

An older idea, which is not very current, is
that instability arises from interactions among the

19



various parts of the spectrum such that there is a
cascade of energy from low to high wave numbers,
with energy trapped in the high wave numbers.
Part of the idea, related to aliasing, is the sup-
position that the grid cannot express wave numbers
higher than ½ J (wave lengths shorter.than 2 A), and
there is therefore a barrier in the spectrum at ½ J
near which energy accumulates. We have already
dealt with the question of aliasing, and pointed out
that a non-linear equation generates wave numbers
higher than a J. In principle their amplitudes may
be calculated as the integration proceeds. A prac-

.~,:,...~,,, tical problem would arise, though, with accounting
::'~i.:.l'- .for all wave numbers, since the numbers of compo-

nents double with each time step. .Another aspect
-of the problem is that if the wave number accounting
is not kept as the integration proceeds, we analysts
are faced with the fact that we cannot distinguish
among the ak (am, n) and bk (bm,n) which make up

~~( ~ Am and Bm in (21).

Thereis no barrier at k = ½ J, but merely
.<- ;.E.jX.. ~insufficient information in the grid values at a

single time step to distinguish all ak and bk from
one another. To demonstrate more precisely,
finite difference systems may be invented which allow
cascade, but in which trapping does not occur.
Consider, for illustration,

u2t + ux x Ux = 0

We again take (8) as the solution. Then

_XXuj = iC cos vTrj + S sin TTj +V

u2 X = (-C sin T j + S cos Tr j)
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Substitution as before then leads to

C2t = - V
A

S2t = 1 C V
/E

u2t = - C s (22)
A

V2 t = 0

Following our earlier derivations, we find the
criterion for stability to be.!*: -a ~:. ) (U2- U2) ..
This criterion differs from the previous one (16)
only in that high wave numbers (U1 and Us ) pIay no
role. The high wave numbers are active, however,
as shown by (22). Interactions in the middle of the
spectrum generate high wave numbers, but energy
trapping does not occur. Instead the two grid in-
crement wave oscillates, if the criterion is satisfied,

.:;_-,::.-.' ~ and is therefore perfectly stable.

We grant that this derivation does not prove
that trapping does not occur in more general cases,
but it is a counter example. We have shown that

;i:~¥:%i}? ~ the idea in the first place has fatal flaws in logic.

Energy conservation and stability

A principle used widely in designing finite
difference forms for atmospheric modeling is due
to Arakawa (1966). Under his basic principle the
.finite difference forms conserve a square, such as
energy, when the functional dependence on time is
not discretized. An example of Arakawa's principle
applied to the shock equation is

8Uau + I (uj+l + uj + UZx
at 3 u 1 ) = 0
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which may also be written

8u ~2x
au + 3 (2 2x + u ) U2x= 0

Multiplying'this equation by 2 u, we get, with
a little manipulation,

2t j4 '~'>.~ ~ = 0at + § [Uj . U. U IX °

If this is summed over j, from 1 to J,

__ ~~2 + 1 ( I8t j=ZI + 3 uJ+l 3 J+l- 

-U12 uo (u.+ U) ]

and, if uO =UJ =O, or if
J

uj = u.j jU u . is conserved..1 j+J j= 

~.,~,.=...~;:' -Of course in the larger atmospheric calcula-
tions, of which the shock equation merely represents
some features, the functional dependence on time
must be discretized, and therefore the conservation
theorems are not satisfied. Nevertheless, it is,..:.. !::-:;-.,: '-::'::: ..... typical of such calculations that the discrete approxi-
mations to the time derivative are highly accurate
during a considerable period of the integration in
time. Experience has shown that during such period,
difference systems based on Arakawa's ideas do in-
deed conserve energy (or whatever other square is
designed for conservation) to a correspondingly high
degree of approximation. This can be a great
advantage, especially in certain basic researches
such as general circulation experiments, where it
is often more important for the numerical model to
copy the atmosphere in conservation of its energy
and other fundamental quantities, than in ordinary
accuracy of its evolution from one state to another.
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The conservation argument cannot, however, as

has sometimes been supposed, be used as an argument
for stability. Using the shock equation as an example,
if u2 were indeed conserved, it is evident that u would
be bounded, and therefore the calculation would be stable.
When, however, the functional dependence on time is
discretized, u2 is not conserved. Rather than u2,
what is conserved is un4 un.½, with centered time-
differences:

3

( E uj, n+_' uj, n-i )t
1 ~~~~~++ 3'[ Uj+l, Ujn (UJ+,n +J(u+l n

-Ul n uo,.n (ul n+ Uo n

Let us seek stability conditions for

u2 t + (2 ' 2X + u) u 2 x = 0

in the case of the restricted spectrum (8). Following
.f-;se;.k~ ~the earlier procedure of substituting and equating

coefficients, we find

AC2t = (XU-V)

s2t 1 C (½ +v
A^~~~ ~~(23)

U 2 t = - 3 C S
A

V 2 t = 0

Again, we may immediately write the solution for V,

V = UM + U2 cos r n.

Otherwise, however, the set can apparently not be
reduced to a linear form in the general case.
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Special solutions, however may be found. For
example,

C = (l+cos nrr) C'

S = (1 -cos Tr n) S'

where C and S' are not restricted. This is the solu-
tion for any set of initial conditions with the restriction,

So = C1 =0.

Note that S is then zero for all even n, and C for
*-! - all odd n . With this restriction, 

U2t = ,0 and

U = U1 + U3 cos rT n

and the stability condition is

$ O S t2 [ ( Uo + l ~~U., (U + iU, <1 1

;??:<,'. : again with the upper signs holding for even n, the
lower for odd n . This condition is only a small
modification of (16), depending again on the same
kind of balance among Uo, UT, U2, and U3 .

In principle, the general stability conditions
for the set (23) may be found through numerical
experiment, if we modify our notion of stability
somewhat. Instead of solutions being bounded for
all n , we will accept as stable solutions those in
which the solution does not exceed in magnitude a
pre-selected large value, As, during a numerical
integration to a pre-selected large value, N, of
n-, i.e.,

|c |. Is |U Aj2 
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for

0 <n <N.

In practice the calculation, and therefore the stability
condition, depend on eight parameters, viz., the two
initial values each of C, S, U, and V. A thorough
investigation not therefore being practical, we con-
ducted a limited one.

We let N = 8640 (corresponding to 60 days of
10 minute time steps) and called a run unstable if

E2 =C2 + s2 + 2 u2 > 1000(A/At) 8

before, n reached N. It may easily be demonstrated
that E2 is conserved if the difference ratios on the
left hand sides of (23) are replaced by their cor- 
responding derivatives. Equations (23), on the other
hand, conserve as they stand the quantity

(Cn+l Cn +Sn+1 Sn + 2 Un+l Un)

which was calculated at the end of each run and com-
pared with its initial value as a check on the machine
program. For one case we let N = 52560 (365 days of
10 minute steps) as a check on the appropriate magni-
tude for N.

Figure 1 shows a typical printout. It is for one
experiment, consisting of 21 x 21 = 441 runs with (23).
The printout is in the form of a table, with arguments
U. and U2 . The vertical argument is Uo, at intervals
of 0. 1 x (A/At), from zero at the top to two at the
bottom. The horizontal argument is U2 , at intervals
of 0. 1 x (A/At), from zero at the left to two at the
right. In the experiment shown, the initial values
of C, S, and U were all 0.1 x (A/At), and their
values at the second time step were calculated with
a forward time step.
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The region between the two lines is the stable

region. The lines were drawn connecting points
representing runs which reached 8640 time steps
without E2 exceeding 1000 x ( A/At)2; and at the same
time enclosing all other such points. The figure shows

((bi _ (u _u2) <-1 (24)

to be an approximation to the stability criterion. The
upper straight diagonal line is 0. 1 x ( A/A t) away
from the left hand critical condition,

U¥,:*.,'.::'.. 0 = U o - UT.

and the lower line is 0.1 x (A/At) away from the
right hand critical condition,

2

A(A/\ .(U U) = 1

Thirty-two other experiments of 441 runs each
were conducted, and sixteen, in which the initial
values of C, S, and U were 0.1 x (A/At)or smaller,
exhibited (24) as an approximation to the stability
criterion. For the other sixteen, in which the initial
C, S. andU were 0. 5 x (A/At) or 1. 0 x (A/At)the

. :i%!::o-::: stable regions on the printouts disappeared or became
very small.

Concluding remarks

Analyses such as performed here cannot
describe all problems of stability in numerical
atmospheric models. However, in a sense they
set necessary conditions for stability. Because
it is so trustworthy in practice, we overlook some-
times that the stability analysis of Courant et al.
(1928) is also severely limited, and sets only neces-
sary conditions for stability. Sufficient conditions
for stability of the nonlinear equations have as yet
not been defined.
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These stability analyses, when applied to
large calculations with a full spectrum, should not
be interpreted only in terms of the initial conditions,
which are usually smooth in space and time, and
which therefore usually satisfy the conditions for
stability derived here. The analyses are much less
helpful than they would be if they were to set the
initial conditions. Because of the severely restricted
spectrum used, the analyses only tell us that certain
conditions must not be violated during the integration
if the variables are to remain bounded.

In large calculations, high-wave numbers and
high frequencies usually have small amplitudes near
the beginning of the calculation, but through nonlinear
interactions they grow as the integration proceeds.
We know little about the growth rates, other than
what we observe in particular integrations with
particular sets of difference equations and particular
sets of initial data. The analyses do tell us, however,
that feedback of high--ave numbers and high frequen-
cies must be suppressed. This is commonly done,
correctly, with either dissipative terms or with
smoothing devices on variables in the equations, or
in the case of high frequencies by adoption of forward
time differences, or time-smoothing devices. The
analyses tell us the nature of what we must do, but
not knowing a priori the growth rates of high-wave
numbers and high frequencies, we are unfortunately
left to cut-and-try on a case-by-case basis in estab-
lishing quantitatively what to do.
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Figure 1

One of the computer outputs from a program
designed to experimentally analyze the so-called
energy conservation finite difference form of the
shock equation.
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